Machine learning in epidemiology

Characterization of risk factors related to the occurrence of pulmonary and extra pulmonary tuberculosis in the province of Settat

Authors

  • Fatima Ezzahra SALAMATE University Hassan the 1st
  • Mohamed EL AZHARI University Hassan the 1st
  • Jamal Zahi University Hassan the 1st

Keywords:

Tuberculose, pulmonaire, extra pulmonaire, Facteurs de risque, Probit

Abstract

In this paper, we conduct a study based on machine learning tools to identify risk factors related to the occurrence of both forms of tuberculosis (noted "TB"). To do so, we use data collected from the registries of the Settat Center for Diagnosis of TB and Respiratory Diseases (CDTMR). As analysis method, we use the Probit logistic regression model. The results show that socio-demographic variables, such as patient age and gender, and clinical variables, such as registration group and duration of resistance, are risk factors that determine each of the forms of TB in patients in the province of Settat.

Downloads

Download data is not yet available.

References

OMS, “Journée mondiale de lutte contre la tuberculose”, 2019, https://www.who.int/fr/campaigns/world-tb-day/world-tb-

“Ministère de la santé Française”, 2022, https://solidarites-sante.gouv.fr/soins-et-maladies/maladies/maladies-infectieuses/article/la-tuberculose.

H. bendad, “3.000 marocains meurent chaque année de la tuberculose”, Maroc, 2022, 257-223, https://fr.le360.ma/societe/3000-marocains-meurent-chaque-annee-de-la-tuberculose.

Ministère de la santé au Maroc “bulletin d’épidémiologie et de santé publique”, 2020.

L. Aazri, S. Aitbatahar, and L. Amro, “Facteurs de risques et diagnostic de la TB”, 2020, Revue des MR Actualités,Volume 12, Issue1, Page 264, ISSN 1877-1203 , https://doi.org/10.1016/j.rmra.2019.11.598

S. Adil , A. Amine , and J. Hasna, “Epidemiological characteristics and some risk factors of extrapulmonary tuberculosis in Larache”, Pan African Medical Journal, Morocco, 2020, 36. 10.11604/pamj.2020.36.381.24870.

O. Abacka, K. Koné ,A. Akoli , R. Bopaka, L.Siri ,and K.Horo ,“aspects épidémiologiques, diagnostiques et évolutifs”,2018. Rev Pneumol Clin. 74(6), 452–457.

M. Dagnachew, B. Belete, and G. Eden, “Prevalence of tuberculous lymphadenitis in Gondar University Hospital”, BMCPublicHealth Northwest Ethiopia ,2013,13435.

H. Lamyae, S. Hafsa ,TB ganglionnaire,“aspects épidémiologiques diagnostiques et thérapeutiques, à propos de 357cas”, La revue médicale panafricaine , 2014 ,157, https://doi.org/10.11604/pamj,19.157.4916

J. Ben Amar, T. Khemis, N. Ben Salah, “Délai diagnostique et de prise en charge de la tuberculose pulmonaire en Tunisie, Tunisie, 2015, Volume 4840, Issue100, Pages 1-296, ISSN: 0761-8425, http://dx.doi.org/10.1016/j.rmr.2015.10.269

D. Bolduc, M. Kaci, " Estimation des Modeles Probit Polytomiques: Un Survol des Techniques ”, Recherche en Energie, Laval, 1991, Papers 9127.

C. Hurlin, “Cours d’économétrie des Variables Qualitatives Chapitre 2: Modèles Logit Multinomiaux Ordonnées et non Ordonnés”. Université d’Orléans,2003.

S. Bopaka, R. Diallo, M. Diallo, B. Diallo, and M. Sowoy, “Facteurs prédictifs de l'échec de traitement antituberculeux en Guinée Conakry”, La revue médicale panafricaine, Guinéeconakry, 2015, 146. https://doi.org/10.11604/pamj.2015.22.146.7216

Downloads

Published

2022-08-21

How to Cite

SALAMATE, F. E., EL AZHARI, M., & Zahi, J. (2022). Machine learning in epidemiology: Characterization of risk factors related to the occurrence of pulmonary and extra pulmonary tuberculosis in the province of Settat. International Journal of Computer Engineering and Data Science (IJCEDS), 2(3). Retrieved from https://www.ijceds.com/ijceds/article/view/40